TOTAL LANDCARE TANZANIA

TREE TRIAL AT TUMBI AGRICULTURAL RESEARCH STATION, TABORA TANZANIA: YEAR 1 RESULTS

W Trent Bunderson, Rebecca Mkufya and Disco D. Mbaruku

Design

A tree trial was established at Tumbi Agricultural Research Station in Tabora to evaluate the potential of other tree species for the future.

The design was a randomized block design with 3 replications of each species with and without fertilizer. **Figure 1** shows the design and layout of the trial. Tree survival and growth rates at the age of 5 months were recorded and were analyzed statistically by multi-variate analysis.

1st Year Results

A summary of results is shown in Table 1 with details in Tables 2-4 and Figures 2-4.

Key observations are described below:

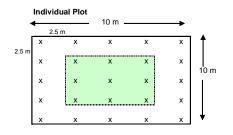

- Nursery seedlings were outplanted very young due to delays in starting the project (see comments in the introduction). Despite this, the trees are thriving well.
- → The trial is being managed very competently with timely weeding and pruning practices.
- → No plots received chemical treatment against termites or other insect pests.
- → Mortality was very low; replacement of the few seedlings that died was done only in the 1st month after planting. No further replacements will be done in the interest of assessing the survival ability of each species.
- → Application of fertilizer has shown no visible effects on tree performance to date. No additional fertilizer will be applied next season.
- ⇒ Survival rates were high (94-100%), but mortality from termites is expected to increase for certain species during the dry season, especially *Acacia crassicarpa*.
- → Analysis of growth rates showed strong differences between tree species (see Table 1).
- → An overall ranking of species was performed by combining individual rankings for survival, height and basal diameter. Although it is far too early to draw any conclusions, it is encouraging that the 3 species currently recommended for both TLC and ATTT programs are all in the top 5 Senna siamea (2), Acacia polyacantha (4), and Albizia lebbeck (5).
- Two other species show excellent potential: *Albizia saman* ranked 1 in every category, and *Terminalia mantaly* ranked 3. This is a naturalized species originally from Madagascar and commonly planted in the Tabora region, mainly as an ornamental.
- The trial at Tumbi will continue for the life of the project to identify other promising species for the program. In addition, a new trial is proposed at TLTC's Urambo Seed Farm where other promising species will be evaluated against the top 5 here.

Table 1: Overall Tree Survival and Growth Rates, Tumbi Trial Tazania, May 2007

					Basal	
Tree Species		Origin	Overall Rank	Survival %	Diameter Cm	Height Cm
Albizia saman (rain or sama	an tree)	S. America	1	100.0	1.69	98
Senna siamea (cassia) *		India / SE Asia	2	99.3	1.56	56
Terminalia mantaly (mantal	y) *	Madagascar	3	100.0	1.24	54
Acacia polyacantha (white	thorn)	Indigenous	4	99.3	1.19	90
Albizia lebbeck (woman's to	ongue) *	India / SE Asia	5	99.3	1.05	63
Acacia crassicarpa (crassic	arpa)	Australia 6		94.0	1.16	82
Acacia xanthophloea (fever	tree)	Indigenous	7	99.3	1.14	50
Faidherbia albida (winter th	orn)	Indigenous	8	98.0	0.85	63
Azadirachta indica (neem)	*	India / SE Asia	9	98.7	0.98	52
Tectona grandis (teak)		India / SE Asia	10	98.0	1.32	26
Albizia procera (tall albizia)		India / SE Asia	11	100.0	0.66	26
Balanites aegyptiaca (torch	wood)	Indigenous	12	99.3	0.52	33
Albizia glaberrima (lowveld	Albizia glaberrima (lowveld albizia)			98.0	0.84	41
Acacia nilotica (scented tho	Indigenous	14	96.7	0.59	31	
	Overall Means	7	98.6	1.06	55	
Effect of Fertilizer	No signif	icant effect on surv	vival or grow	th (p>0.1)		
Species Differences	Strong si	gnificant difference	e between sp	pecies (p<0.0	01 to p<0.0001	1)

^{*} Naturalized species in Tanzania

Fig. 1: Tree Trial Design and Layout for Tanzania

Species in Replicated Trial	Code
1 Acacia crassicarpa	AC
2 Acacia polyacantha	AP
3 Albizia glaberrima	AG
4 Albizia lebbeck	AL
5 Albizia procera	APR
6 Albizia saman	AS
7 Azadirachta indica	AZ
8 Balanites aegyptiaca	BA
9 Acacia nilotica	AN
10 Acacia xanthophloea	AX
11 Senna siamea	SS
12 Tectona grandis	TG
13 Terminalia mantaly	TM
14 Faidherbia albida	FA

Tubes: 2450

Species in Observation Trial	Code
15 Acacia galpinii	AGP
16 Terminalia superba	TS
17 Milletia excelsa	ME
18 Acacia gerrardii	AGD
19 Bamboo	В

Instructions for Trial Layout / Management

- 1 Each plot measures 10 m x 10 m 2 Pit size is 30 x 30 cm

- 2 Pit size is 30 x 30 cm²
 3 25 seedlings per plot; 150 seedlings per species
 4 3 replications (plots) per species (i.e., 3 plots per species / treatment)
 5 Total plots = 14 species x 6 plots = 84 plots; Total Area = 0.84 ha
 6 Arrangement/order of plots is random Fit the plots into the site as best you can;
 7 Try to maintain unifomity in soils, at least within a given REP

- 8 No plots should receive any chemical treatment against termites.
 9 Keep plot weed free 1 m around the seedling, and make a basin to catch rainfall
 10 Select 6 Plants in central portion of the plot for measuring height and basal diameter select the first 6 encountered, If there are less than 6 surviving plants, select the 6 nearest plants to the center of the plot for the measurements

With Fertilizer (even numbered blocks i.e. 2, 4 and 6)
Without Fertilizer (odd numbered Blocks i.e. 1, 3 and 5

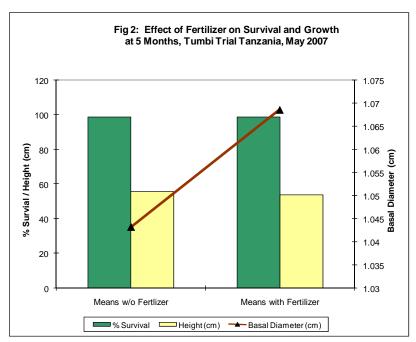
Plots for species observation

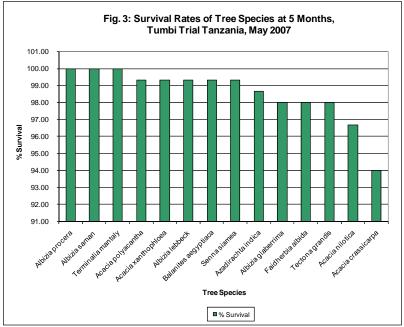
Boarder/filler plots - could include application of fertilizer or not as per the block in question

_	Without	cranzor (odd rid	mbered blooks	i.e. i, 3 and 5		boarder/filler p	iots - codia iriot	dde application	or remilizer or r	iot as per trie bi	lock in question		
į	BLO	RE		CK 5	BLO	RE	P 2 BLO	CK 3	REP 1 BLOCK 2 BLOCK 1				
1	AG	ВА	AN	AZ	APR	APR			AX				
		3071	2070	2057					2028	2015			
	AX	APR	TG	SS	AC	SS	SS	AL	APR	TM	AS	BA	
	3084	3072	2069	2058	1056	1043	3042	3029	2027	2016	1014	1001	
	AL	AN	ВА	TM	ВА	AX	APR	AG	TG	AG	SS	AC	
1 4	3083	3073	2068	2059	1055	1044	3041	3030	2026	2017	1013	1002	
	FA	SS	AG	FA	AP	AS	AP	TG		NTHILL OR ESSION	AN	AZ	
1 -	3082	3074	2067	2060	1054	1045	3040	3031			1012	1003	
Ш	TM				FA	AZ	AZ	AN	AZ	SS	AX	TG	
	3081	BARE - AN	ITHILL OR DEF	PRESSION	1053	1046	3039	3032	2025	2018	1011	1004	
2.5m	AS				AN	AL	FA	AS	AL	AC	TM	AG	
	3080				1052	1047	3038	3033	2014	2019	1010	1005	
	AG	AZ	AL	AP	TG	TM	AX	TM	AS	ВА	AL	FA	
	3079	3075	2066	2061	1051	1048	3037	3034	2023	2020	1009	1006	
	TG	AC	AC	APR	APR	AG	BA	AC	FA	AN	AP	APR	
1 4	3078	3076	2065	2062	1050	1049	3036	3035	2022	2021	1008	1007	
	FA	AP 3077	AS 2064	AX 2063	FA	AS	A	S	А	s	AS TS	AGP	
▼ L		3077	2064	2063									
									TS	ME		ADG	

122.5m

Table 2: Tree Survival Rates for each Species at 5 Months, Tumbi Tree Trial Tanzania (May 2007)


	MEAN SURVIVAL %								
Tree Species	No Fertilizer					Overall			
	Rep 1	Rep 2	Rep 3	Mean	Rep 1	Rep 2	Rep 3	Mean	Mean
Acacia crassicarpa	88.0	88.0	100.0	92.0	96.0	100.0	92.0	96.0	94.0
Acacia nilotica	100.0	100.0	92.0	97.3	96.0	100.0	92.0	96.0	96.7
Acacia polyacantha	100.0	100.0	100.0	100.0	100.0	96.0	100.0	98.7	99.3
Acacia xanthophloea	100.0	96.0	100.0	98.7	100.0	100.0	100.0	100.0	99.3
Albizia glaberrima	100.0	100.0	96.0	98.7	96.0	100.0	96.0	97.3	98.0
Albizia lebbeck	100.0	100.0	96.0	98.7	100.0	100.0	100.0	100.0	99.3
Albizia procera	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Albizia saman	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Azadirachta indica	100.0	100.0	92.0	97.3	100.0	100.0	100.0	100.0	98.7
Balanites aegyptiaca	100.0	100.0	100.0	100.0	100.0	100.0	96.0	98.7	99.3
Faidherbia albida	100.0	100.0	96.0	98.7	100.0	92.0	100.0	97.3	98.0
Senna siamea	100.0	100.0	100.0	100.0	100.0	96.0	100.0	98.7	99.3
Tectona grandis	96.0	100.0	100.0	98.7	100.0	100.0	92.0	97.3	98.0
Terminalia mantaly	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Means	98.9	98.9	98.0	98.6	99.1	98.9	97.7	98.6	98.6


Table 3: Tree Basal Diameter for each Species at 5 Months, Tumbi Tree Trial Tanzania (May 2007)

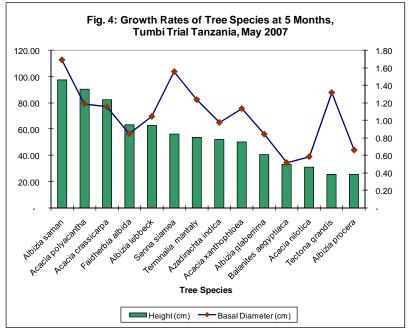

	MEAN BASAL DIAMETER (cm)								
		No Fe	rtilizer			Overall			
Tree Species	Rep 1	Rep 2	Rep 3	Mean	Rep 1	Rep 2	Rep 3	Mean	Mean
Acacia crassicarpa	1.0	1.2	1.1	1.1	1.2	1.3	1.2	1.2	1.2
Acacia nilotica	0.7	0.6	0.4	0.5	0.7	0.6	0.6	0.7	0.6
Acacia polyacantha	1.3	1.3	1.7	1.4	0.6	1.0	1.4	1.0	1.2
Acacia xanthophloea	1.1	1.2	1.4	1.2	0.7	1.3	1.0	1.0	1.1
Albizia glaberrima	0.8	1.0	8.0	0.9	0.9	1.0	0.6	0.8	0.8
Albizia lebbeck	1.2	0.9	1.1	1.1	1.3	0.9	0.9	1.0	1.0
Albizia procera	0.4	0.7	0.5	0.5	0.9	0.7	8.0	8.0	0.7
Albizia saman	1.7	1.7	1.7	1.7	2.1	1.8	1.3	1.7	1.7
Azadirachta indica	0.9	0.9	1.0	0.9	0.8	1.3	1.1	1.0	1.0
Balanites aegyptiaca	0.4	0.6	0.6	0.5	0.6	0.5	0.4	0.5	0.5
Faidherbia albida	1.0	8.0	0.9	0.9	0.8	0.8	8.0	0.8	0.9
Senna siamea	1.7	1.3	1.3	1.4	1.6	1.8	1.7	1.7	1.6
Tectona grandis	1.2	1.3	0.9	1.1	1.6	1.4	1.6	1.5	1.3
Terminalia mantaly	1.4	1.3	1.2	1.3	1.2	1.5	8.0	1.2	1.2
Means	1.05	1.04	1.03	1.04	1.08	1.13	1.00	1.07	1.06

Table 4: Tree Heights for each Species at 5 Months, Tumbi Tree Trial Tanzania (May 2007)

	MEAN HEIGHT (cm)								
		No Fe	rtilizer			Overall			
Tree Species	Rep 1	Rep 1 Rep 2 Rep 3 Mean			Rep 1	Mean	Mean		
Acacia crassicarpa	86.2	87.3	67.8	80.4	73.8	91.7	86.3	83.9	82.2
Acacia nilotica	38.5	31.3	25.2	31.7	33.8	31.2	25.5	30.2	30.9
Acacia polyacantha	93.0	95.3	125.7	104.7	39.2	83.7	105.0	75.9	90.3
Acacia xanthophloea	56.5	54.8	51.2	54.2	42.7	47.0	49.5	46.4	50.3
Albizia glaberrima	35.2	44.3	39.8	39.8	46.0	49.7	28.2	41.3	40.5
Albizia lebbeck	62.7	53.3	72.0	62.7	87.5	47.3	55.2	63.3	63.0
Albizia procera	10.2	26.0	20.7	18.9	37.3	30.0	30.0	32.4	25.7
Albizia saman	90.2	90.7	109.0	96.6	125.2	93.3	77.2	98.6	97.6
Azadirachta indica	52.5	50.0	52.3	51.6	49.0	54.3	54.0	52.4	52.0
Balanites aegyptiaca	26.3	38.5	40.2	35.0	33.8	34.5	27.0	31.8	33.4
Faidherbia albida	75.7	61.7	79.2	72.2	52.8	61.8	49.5	54.7	63.4
Senna siamea	66.3	42.3	49.8	52.8	54.0	63.5	60.8	59.4	56.1
Tectona grandis	20.7	24.2	15.0	19.9	42.5	27.7	25.0	31.7	25.8
Terminalia mantaly	65.7	51.0	58.0	58.2	49.2	66.8	32.5	49.5	53.9
Means	55.7	53.6	57.6	55.6	54.8	55.9	50.4	53.7	54.7

